Raw Data
 Tokenization

Cornell CS 5740: Natural Language Processing Yoav Artzi, Spring 2023

Tokenization

- How do we represent an input text?

Tokenization: splitting a string into a sequence of tokens

- Given a piece of text \bar{x}, we said it's a sequence $\left\langle x_{1}, \ldots, x_{n}\right\rangle$
- But how do you get from a string to $\left\langle x_{1}, \ldots, x_{n}\right\rangle$?
- So far: we split to "words" according to white spaces
"I love Lucy, but adore Ethel"

$$
\bar{x}=\langle\mathrm{I}, \text { Love, Lucy, ,, but, adore, Ethel }\rangle
$$

- Actually, even here we can see it's more complex. Why?

Tokenization

> "I love Lucy, but adore Ethel" $\bar{x}=\langle I$, Love, Lucy, ,, but, adore, Ethel \rangle

- So, tokenization is not simple, and tokenizers require may specialized rules
- Such as, what will we do with the following strings:
- "amazing!", "state-of-the-art", "un-thinkable", "prize-winning", "aren't", "O’Neill"
- Some languages don't even use spaces to mark word boundaries!
- Check out spaCy’s tokenizers! (https://spacy.io/)

Tokenization Handling Unknown Words

- What happens when we encounter a word that we have never seen in our training data?
- With word-level tokenization, not much we can do
- Except assigning to it a special <UNK> token, or maybe do something a bit smarter with some clustering
- Don't forget to use UNK during training - why?
- Why this is bad?

Tokenization Limitations of <UNK>

- Generally, we lose most of the information the word conveys
- Especially hurts in texts/languages with many rare words/entities

The chapel is sometimes referred to as "Hen Gapel Lligwy" ("hen" being the Welsh word for "old" and "capel" meaning "chapel").

The chapel is sometimes referred to as " Hen <unk> <unk> " (" hen " being the Welsh word for " old " and " <unk> " meaning " chapel ").

Tokenization
 Other Limitations

- Word-level tokenization treats different forms of the same root as completely separate (e.g., "open", "opened", "opens", "opening", etc)
- This means separate features or embeddings!
- Why is this a problem? Especially with limited data?

Tokenization Other Limitations

- Word-level tokenization treats different forms of the same root as completely separate (e.g., "open", "opened", "opens", "opening", etc)
- This means separate features or embeddings!
- Why is this a problem? Especially with limited data?
- We can use pre-trained embeddings (e.g., word2vec)
- So we can learn similar embeddings given enough data
- But still separate parameters, and will still hurt with rare words

Character-level Tokenization

- Let's reconsider how we split:
- Instead of white spaces, just split to characters
- Impact on vocabulary size? Unknown word problem? Other input properties?

Character-level Tokenization

- Let's reconsider how we split:
- Instead of white spaces, just split to characters
- Impact on vocabulary size? Unknown word problem? Other input properties?
- Small vocabulary: just the number of unique characters in the training data!
- Much longer input sequences
- Need to learn from scratch how to combine characters to recover word meaning
- Will BOW/NBOW models work?

Subword Tokenization

- "Word"-level: issues with unknown words and information sharing, and gets complex fast
- Also, fits poorly to some languages
- Character-level: long sequences, the model needs to do a lot of heavy lifting in representing that is encoded in plain-sight
- Let's find a middle ground!
- Subword tokenization first developed for machine translations
- Based on byte pair encoding (Gage, 1994)
- Now, used everywhere

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch School of Informatics, University of Edinburgh
\{rico.sennrich, a.birch\}@ed.ac.uk, bhaddow@inf.ed.ac.uk

The main motivation behind this paper is that the translation of some words is transparent in that they are translatable by a competent translator even if they are novel to him or her, based on a translation of known subword units such as morphemes or phonemes.

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$

Word	Frequency
hug	10
pug	5
pun	12
bun	4
hugs	5

- Return \mathscr{V}

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}

$$
\mathscr{V}=\{b, g, h, n, p, s, u\}
$$

Word
Frequency
$\mathrm{h}+\mathrm{u}+\mathrm{g} \quad 10$
p+u+g
5
$p+u+n \quad 12$
b+u+n 4
$\mathrm{h}+\mathrm{u}+\mathrm{g}+\mathrm{s} \quad 5$

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}

$\mathscr{V}=\{\mathrm{b}, \mathrm{g}, \mathrm{h}, \mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{u}\}$	
Word	Frequency
$\mathrm{h}+\mathrm{u}+\mathrm{g}$	10
$\mathrm{p}+\mathrm{u}+\mathrm{g}$	5
$\mathrm{p}+\mathrm{u}+\mathrm{n}$	12
$\mathrm{~b}+\mathrm{u}+\mathrm{n}$	4
$\mathrm{~h}+\mathrm{u}+\mathrm{g}+\mathrm{s}$	5
Pair	Frequency
$\mathrm{u}+\mathrm{g}$	20
$\mathrm{p}+\mathrm{u}$	17
$\mathrm{u}+\mathrm{n}$	16
$\mathrm{~h}+\mathrm{u}$	15
$\mathrm{~g}+\mathrm{s}$	\vdots

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}

$\mathscr{V}=\{\mathrm{b}, \mathrm{g}, \mathrm{h}, \mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{u}\}$	
Word	Frequency
$\mathrm{h}+\mathrm{u}+\mathrm{g}$	10
$\mathrm{p}+\mathrm{u}+\mathrm{g}$	5
$\mathrm{p}+\mathrm{u}+\mathrm{n}$	12
$\mathrm{~b}+\mathrm{u}+\mathrm{n}$	4
$\mathrm{~h}+\mathrm{u}+\mathrm{g}+\mathrm{s}$	5
Pair	Frequency
$\mathrm{u}+\mathrm{g}$	20
$\mathrm{p}+\mathrm{u}$	17
$\mathrm{u}+\mathrm{n}$	16
$\mathrm{~h}+\mathrm{u}$	15
$\mathrm{~g}+\mathrm{s}$	\vdots

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}

$$
\mathscr{V}=\{b, g, h, n, p, s, u, u g\}
$$

Word	Frequency
$h+u+g$	10
$p+u+g$	5
$p+u+n$	12
$b+u+n$	4
$h+u+g+s$	5

Pair	Frequency
$\mathrm{u}+\mathrm{g}$	20
$\mathrm{p}+\mathrm{u}$	17
$\mathrm{u}+\mathrm{n}$	16
$\mathrm{~h}+\mathrm{u}$	15
$\mathrm{~g}+\mathrm{s}$	\vdots

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}

$$
\mathscr{V}=\{\mathrm{b}, \mathrm{~g}, \mathrm{~h}, \mathrm{n}, \mathrm{p}, \mathrm{~s}, \mathrm{u}, \mathrm{ug}\}
$$

Word	Frequency
$\mathrm{h}+\mathrm{ug}$	10
$\mathrm{p}+\mathrm{ug}$	5
$\mathrm{p}+\mathrm{u}+\mathrm{n}$	12
$\mathrm{~b}+\mathrm{u}+\mathrm{n}$	4
$\mathrm{~h}+\mathrm{ug}+\mathrm{s}$	5

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}

$$
\mathscr{V}=\{\mathrm{b}, \mathrm{~g}, \mathrm{~h}, \mathrm{n}, \mathrm{p}, \mathrm{~s}, \mathrm{u}, \mathrm{ug}\}
$$

Word	Frequency
h+ug	10
$p+u g$	5
$p+u+n$	12
$b+u+n$	4
$h+u g+s$	5

Pair	Frequency
$\mathrm{u}+\mathrm{n}$	16
$\mathrm{~h}+\mathrm{ug}$	15
$\mathrm{p}+\mathrm{u}$	12
$\mathrm{p}+\mathrm{ug}$	5
$\mathrm{ug}+\mathrm{s}$	\vdots

Byte Pair Encoding (BPE)

- $\mathscr{V} \leftarrow$ All characters in the training data (as base tokens)
- For k steps:
- Tokenize the data, taking the longest prefix each time
- Count the frequency of adjacent token pairs in the data
- Choose the pair $\langle l, r\rangle$ that occurs most frequently
- Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup\{l r\}$
- Return \mathscr{V}
$\mathscr{V}=\{b, g, h, n, p, s, u, u g, u n, h u g\}$

Word	Frequency
hug	10
p+ug	5
p+un	12
b+un	4
hug+s	5

Byte Pair Encoding (BPE)

- To avoid <UNK> altogether, must add all possible characters/ symbols
- Oops: there are $\sim 138 \mathrm{~K}$ unicode symbols
- Instead, use bytes!
- GPT-2 does this with some rules to prevent certain types of merges
- Commonly vocabulary sizes are 32-64K
- Package to help with tokenization: tokenizers from Hugging Face (https://github.com/huggingface/tokenizers)

Other Subword Encoding Schemes

- WordPiece (Schuster et al., 2012): merge to increase likelihood as measured by a language model (vs. frequency as in BPE)
- SentencePiece (Kudo et al., 2018): can do subword tokenization without pre-tokenization (i.e., using white spaces)
- Good for words without such word boundaries
- Although pre-tokenization still usually helps

Subword Tokenization What do Subwords Capture?

- Subwords can be arbitrary strings
- But can also be meaning-bearing units
- Can capture morphemes (the smallest meaning-bearing unit)
- "unlikeliest" \rightarrow [un-, likely, -est]
- Can separate single form from plural
- etc
- Importantly: this arises from the data

Subword Tokenization

Limitations

- Does not work well with languages that have more complex morphology (word forms), such as Turkish and Arabic
- Pre-tokenization using spaces doesn't work on some languages (e.g., Chinese and Thai don't use spaces between words)
- There are other recipes:
- Tokenizer free, just work with bytes (e.g., ByT5)
- Other learning techniques with soft tokenization (e.g., Charformer)

Acknowledgements

- The slides in this deck were adapted from Mohit lyyer, with some modifications following slides by Ana Marasović.

